

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

History

Channel Access

- DBR_*: Numbers, enums, string, scalar and array, with time, alarm, limits
- Since beginning of EPICS
- Still fully supported

- **PV** Access
 - PV Data: Arbitrary structures
 - Started as "EPICS V4" development
 - Since EPICS 7 (Dec. 2017) included in EPICS base

PV Access

Fundamentally similar to Channel Access

- Name search via UDP
- Connection for data transfer via TCP
- EPICS_PVA_ADDR_LIST, EPICS_PVA_AUTO_ADDR_LIST

Get, put, monitor

– Plus an 'RPC' type operation

Arbitrary PV Data structures instead of DBR_.. types

Custom Data: Great, but then what?

structure:		
double	value	
short	status	
short	severity	
string	units	
time	timeStamp	
•••		

structure:		
short	level	
double	data	
string	type	
time	stamp	
•••		

structure:		
short	level	
double	wert	
string	typ	
long	zeit	
•••		

Structul	structure:		
short	info		
double	content		
string	meta		
long	ms		
••••			

- Which number to show on a user display?
- What units?
- Is this an alarm?
- Time stamp?

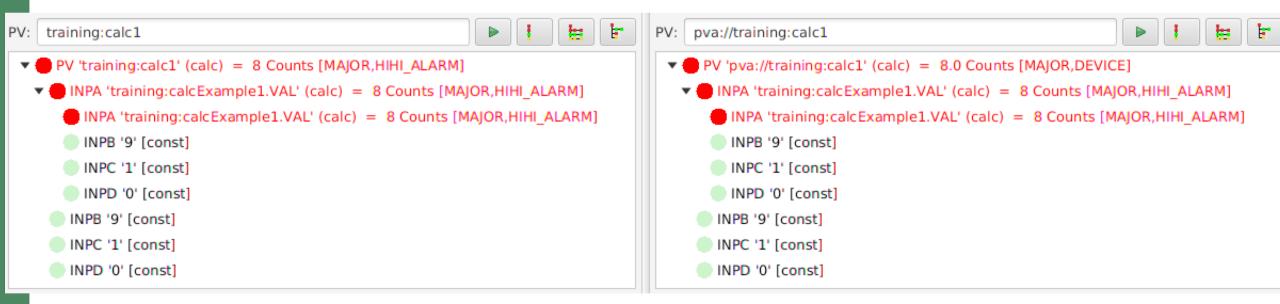
- "Normative Types"
- Channel Access

struct dbr_ctrl_double: short status short severity short precision char units[8] ... no timestamp ... double value

```
struct dbr_time_double:
short status
short severity
timestamp stamp
double value
```

You get what you request (network always transfers complete struct) You get what you request (but network only transfers changes)

• PV Access


epics:nt/NTScalar: double value short status short severity string units time timeStamp

...

Channel Access **PV** Access VS. EPICS 7 IOCs include PVA server Similar command line tools: pvinfo training:ail cainfo training:ail pvget training:ail caget training:ail pvget -m training:ai1 camonitor training:ail pvget -r 'field()' training:ail caget -d CTRL DOUBLE training:ai pvget training:ail.SCAN caget training:ai1.SCAN

CARK RIDGE HIGH FLUX ISOTOPE NATION LABORATOR REACTOR SOURCE

CS-Studio: Use 'pva://...'

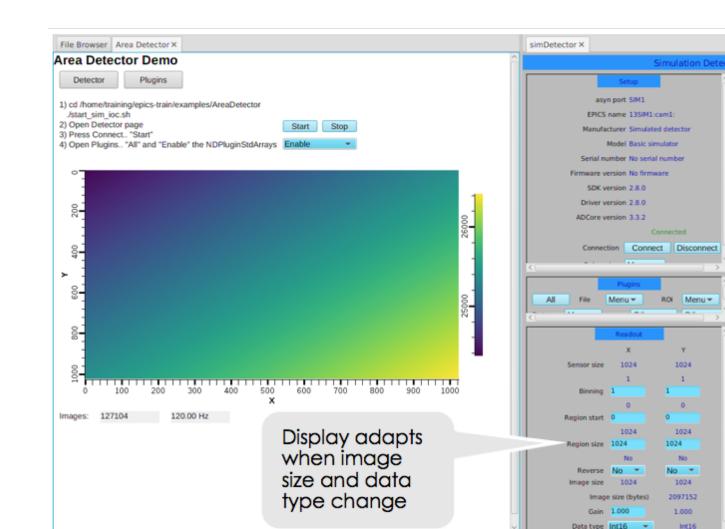
Images: Normative type NTNDArray

Served by Area Detector (NDPluginPVA) or 'start_imagedemo'

• pvinfo IMAGE

CAK RIDGE

National Laboratory | REACTOR


- Value, dimensions, codec

CS-Studio: Image widget
 Only needs pva://IMAGE

SPALLATION

NEUTRON

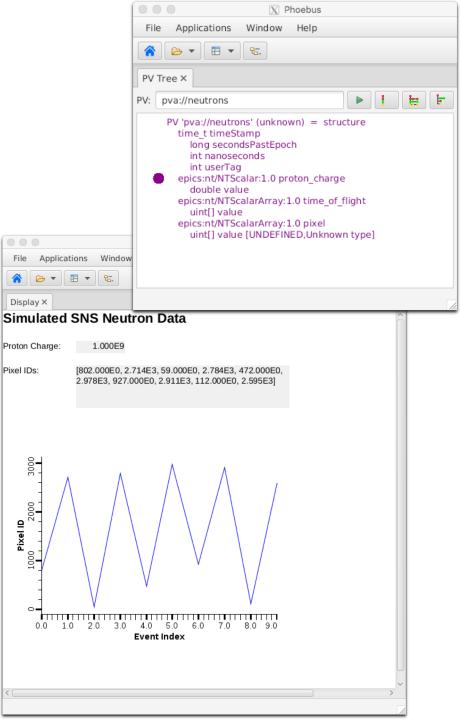
SOURCE

Custom PV Data

SNS Beam Lines started to use this in ~2014 start_neutrondemo pvinfo neutrons

Allows fetching just what's needed:

```
# For detector pixel display
pvget -r 'field(pixel)' neutrons
pvget _m _r 'field(timeStamp, pixel)' neutrons
```


For energy displays
pvget _m _r 'field(time_of_flight, pixel)' neutrons

Custom PV Data in CS-Studio

<u>Cannot</u> handle arbitrary structure pva://neutrons

<u>Can</u> handle fields which are scalar or array pva://neutrons/proton_charge

pva://neutrons/pixel

10

PV Access and Python

```
Basic 'get'
cd ~/epics-train/examples/python/
python example1.py
```

'monitor'
 python example2.py

11

PV Access API with Channel Access as "Provider"

PV Access supports both the actual PvAccess protocol but also Channel Access.

New tools, written for PVA, can thus fall back to CA:

python example3.py

Tools like CS-Studio can use both ca:// and pva://, so multiple transition options.

Custom PV Data in Python Client

Python receives data as dictionary, access to any element

python neutrons.py

13

Custom PV Data from Python Server

```
# Server
python server.py
# Client
```

```
pvinfo pair
pvget -m -r "x, y" pair
```

```
Surprisingly easy:
pv = PvObject({'x': INT, 'y' : INT})
server = PvaServer('pair', pv)
x = 1
while True:
    pv['x'] = x
```

pv['y'] = 2*x

sleep(1)x = x + 1

server.update(pv)

More Examples

Display Builder pva_server_ramp Python code that serves 'pva://ramp' with alarm, prec, timestamp, ...

Display Builder table_server Python code that serves 'pva://table' as "NTTable"

→Not practical to replace regular IOCs with python, but useful when custom data is needed

Custom PV Data from IOC Records

`makeBaseApp.pl -t example` includes "group", SEE ~/epics-train/examples/ExampleApp/Db/circle.db

Calc records ..: circle:x & ..: circle:y compute (x, y) coordinate on circle

info() annotations create PV "training:circle" PV as struct { angle, x, y }

PVA "training:circle" updates atomically

camonitor training:x training:y receives separate X, Y Updates pyget -m training:circle Will always see sqrt(x²+y²)==1

cd ~/epics-train/examples/python
python circle.py

CAK RIDGE National Laboratory

PV Access

- Update to Channel Access
 - Both can be used in parallel
- Similar, but supports custom data types
 - Won't replace IOC, but useful for special cases

- Since EPICS 7 included in base
 - Details of 'group', PVA gateway, 'field(...)' access still evolving